On p-approximation properties for p-operator spaces
نویسندگان
چکیده
منابع مشابه
Approximation properties of certain operator-induced norms on Hilbert spaces
We consider a class of operator-induced norms, acting as finite-dimensional surrogates to the L2 norm, and study their approximation properties over Hilbert subspaces of L2. The class includes, as a special case, the usual empirical norm encountered, for example, in the context of nonparametric regression in a reproducing kernel Hilbert space (RKHS). Our results have implications to the analysi...
متن کاملL p-SPACES FOR 0 < p < 1
In a first course in functional analysis, a great deal of time is spent with Banach spaces, especially the interaction between such spaces and their dual spaces. Banach spaces are a special type of topological vector space, and there are important topological vector spaces which do not lie in the Banach category, such as the Schwartz spaces. The most fundamental theorem about Banach spaces is t...
متن کاملp-Operator Spaces and Figà-Talamanca-Herz Algebras
We study a generalisation of operator spaces modelled on Lp spaces, instead of Hilbert spaces, using the notion of p-complete boundedness, as studied by Pisier and Le Merdy. We show that the Figà-Talamanca-Herz Algebras Ap(G) becomes quantised Banach algebras in this framework, and that the cohomological notion of amenability of these algebras corresponds to amenability of the locally compact g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2010
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2010.04.007